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Abstract. We discuss (1+ 1)-dimensional sigma models and Heisenberg models in which
the target space has the topology of a cylinder. In these integrable systems, the solutions are
classified by a winding number.

1. Introduction

This letter deals with integrable (1+ 1)-dimensional systems, in which the configuration
space or phase space has disconnected sectors classified topologically by an integer (a
winding number). The general set-up involves a field8(x, t) taking values in some manifold
M. Heret ∈ R denotes time, andx ∈ X is the space variable; eitherX = R and we impose a
boundary condition8(−∞, t) = 8(∞, t), orX = S1 (i.e.8 is periodic inx). Furthermore,
M is chosen so that its fundamental group equals the group of integersZ. So for each fixed
t , 8(·, t) is in effect a continuous mapping from a circle intoM, and it therefore has a
winding numberN ∈ Z. As t changes, this integer remains constant. One could also view
a solution8 as wrapping the spacetimeX × R around the image manifoldM, with this
mapping having winding numberN (in an appropriate sense).

The prototype in theX = R case is the sine-Gordon equation, whereM = S1. If we
think of 8 as a two-dimensional unit vector(8 · 8 = 1), then the sine-Gordon system
corresponds to the Lagrangian density

L = 1
2η

µν8µ ·8ν − (1−K ·8) (1)

whereK is a constant unit vector. Hereafterxµ = (x0, x1) = (t, x) are the spacetime
coordinates; a subscript denotes partial differentiation; andηµν = diag(1,−1) is the
(inverse) spacetime metric. AnN -kink solution of the sine-Gordon equation has winding
numberN .

In our examplesM will be the cylinderS1×R, which (at least to begin with) we think
of as the hyperboloid of one sheet inR3. One can visualize the field as a closed string
which is wound around this cylinder, and evolves in time. Instead of8, let us use the
symbolψa, denoting a three-dimensional vector satisfying

ηabψ
aψb = 1 (2)

where ηab = diag(1, 1,−1). The metric on the hyperboloid (2) is taken to be the one
induced by the metricηab; M is then a symmetric spaceSO(2, 1)/SO(1, 1). Two naturally
defined systems taking values onM are the nonlinear sigma model, and the Heisenberg
model (Landau–Lifshitz equation). Theσ -model is defined by the Lagrangian density

L = 1
2η

µνψa
µψ

b
ν ηab (3)
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while the Landau–Lifshitz equations arise from the Hamiltonian density

H = 1
2ψ

a
x ψ

b
x ηab (4)

with Poisson brackets

{ψa(x), ψb(y)} = −δ(x − y)εabcψd(x)ηcd . (5)

The analogousS2 systems, in whichηab is replaced by the Euclidean metricδab, are of
course well known integrable systems; and their hyperbolic versions are therefore integrable
too, simply by analytic continuation. (By integrability we mean the existence of a suitable
Lax pair.) In fact, these hyperbolic versions have been widely studied in their own right:
cf [1–6]. The aim in what follows is to examine the simplest ‘winding’ solutions of the
systems (3) and (4), (5).

2. The hyperbolic Heisenberg model

The Landau–Lifshitz equation obtained from (4) and (5) is

ψa
t = ηabεbcdψcψd

xx. (6)

If we parametrize the hyperboloid in terms of ‘polar angles’ as

ψa = (coshθ cosφ, coshθ sinφ, sinhθ)

then (6) is equivalent to

θt = 2(sinhθ)θxφx + (coshθ)φxx (7)

φt = (sechθ)θxx + (sinhθ)(φx)
2 (8)

while if we parametrize in terms of a stereographic projection as

ψa = 1

1+ u2− v2
(1− u2+ v2, 2u, 2v)

then (6) becomes

ut = −vxx − 2αv(u2
x + v2

x)+ 4αuuxvx (9)

vt = −uxx + 2αu(u2
x + v2

x)− 4αvuxvx (10)

whereα = (1+ u2− v2)−1.
Let us first look for static winding solutions, by solving (7), (8) withθ and φ being

functions ofx only. From (7) we obtain

φx = B sech2 θ (11)

whereB is a constant; and then (8) integrates to

θx =
√
A+ B2 sech2 θ (12)

with A constant. For a winding solution, we wantθ(x) to be non-monotonic, which requires
−B2 6 A < 0. WriteA = −N2, where 0< N 6 B. Then the solution of (12) is

θ(x) = sinh−1
(√
B2/N2− 1 sin(Nx)

)
(13)

and this is periodic, with period 2π , providedN is an integer. Finally,φ(x) is obtained
by integrating the smooth function (11). To check that we have a winding solution, it is
sufficient to compute

1φ =
∫ 2π

0
B sech2 θ dx (14)
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we find that1φ = 2πN , and so we have a space-periodic static solution, with winding
numberN .

Note that if B = N in (13), thenθ = 0 andφ = Nx: a solution which windsN
times around the ‘waist’ of the hyperboloid. The simplest time-dependent solution is a
generalization of this, namelyθ ≡ constant,φ = Nx +N2(sinhθ)t .

For these solutions, the spaceX is the circle; in fact, there are no travelling-wave
winding solutions forX = R. One can find a simple time-dependent solution onR by
using the stereographic form (9), (10) of the equations. Let us look for solutions in which
α is a function ofx only, i.e. takeu2 − v2 = f (x)2. It follows from (9) and (10) that the
function g = vux − uvx satisfies

∂g

∂x
= 2g

∂

∂x
log(1+ f 2).

If we take the simplest solution of this, namelyg ≡ 0, thenu andv must have the form

u(x, t) = f (x) coshh(t)

v(x, t) = f (x) sinhh(t).

Substituting these into (9), (10) gives dh/dt = −m constant, and

d2f

dx2
= 2f

(1+ f 2)

(
df

dx

)2

+mf. (15)

This has the first integral(
df

dx

)2

= c(1+ f 2)2−m(1+ f 2)

wherec is an arbitrary constant. For winding solutions one needsc > 0. If c = 0, one
obtains a solution which is equivalent to (18) below; so takec > 0, and scalex so that
c = 1. Now the requirement of winding imposes a restriction onm, namelym 6 1. For
m < 0 one obtains solutions which are similar to those form > 0, so let us take 06 m 6 1.
Then the solution of (15) is

f (x) = √1−m sc(x|m) (16)

in the elliptic-function notation of [7]. The two limits of (16) are

f (x) = tanx for m = 0 (17)

and (after a shift inx)

f (x) = cosechx for m = 1. (18)

Therefore, we have a family of winding solutions parametrized bym ∈ [0, 1], with
h(t) = −mt and wheref (x) is specified in (16), (17) or (18). For (16) and (17), the
solution is periodic (i.e.X = S1); while for (18) it lives onX = R.

A Lax pair corresponding to the equation (6) is as follows. Define a 2× 2 matrix
S ∈ SL(2,R) by

S =
[

ψ1 ψ2+ ψ3

ψ2− ψ3 −ψ1

]
.

Then the consistency condition for the linear system

9x = λS9
9t = −λ(2λS + SxS)9
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is exactly (6). Implementation of the inverse scattering transform (onX = R) producesN -
soliton solutions, and these turn out to have winding numberN . The solution corresponding
to (18), which in terms ofψa is

ψa = (1− 2 sech2 x, 2 sech2 x sinhx cosht,−2 sech2 x sinhx sinht)

is the simplest example: a stationary 1-soliton with winding numberN = 1. These solitons
are closely related to those of the ‘standard’ Heisenberg model [8].

3. The hyperbolic sigma model

In terms of the(θ, φ) parametrization, theσ -model equations are

θtt − θxx = − coshθ sinhθ(φ2
t − φ2

x) (19)

(φt cosh2 θ)t = (φx cosh2 θ)x. (20)

For the static problem, the equations (and hence their solutions) are the same as for the static
Heisenberg case of the previous section. What follows are some examples of time-dependent
winding solutions.

First, let us look for solutions onX = S1 for which φ = x. (To go to winding number
N > 1 is an easy generalization.) It follows from (19), (20) thatθ is a function oft only,
satisfying

θ2
t = c + sinh2 θ

where c is an arbitrary constant. This is easily integrated in terms of elliptic functions.
Apart from the casec = 0, the solutions have the property thatθ(t) reaches infinity in finite
time. An example isc = 1, where the solution

θ(t) = sinh−1 tant

goes fromθ = −∞ to +∞ as t goes from−π/2 to +π/2. For c > 0 the solutions all
have this behaviour, whereas forc < 0, θ comes in from infinity, turns round, and goes out
again. In the limiting casec = 0, the solution

θ(t) = 2 tanh−1(ket )

includes the static caseθ ≡ 0, and tends asymptotically toθ = 0 ast −→ −∞.
Our second family of solutions arises from the ‘self-duality’ equations

φx = (sechθ)θt
φt = (sechθ)θx

which imply (19), (20). Soφ and µ = 2 tan−1 expθ satisfy φx = µt, φt = µx , and
are therefore ‘conjugate’ solutions of the (1+ 1)-dimensional wave equation. The general
solution is

φ = f (x + t)+ g(x − t)
µ = f (x + t)− g(x − t)

wheref andg are arbitrary functions. All winding solutions are defined only on a finite
time interval. For example, the choice

f (ξ)− π
4
= g(ξ)+ π

4
= 1

2
π tanhξ
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leads to

φ = π sinh 2x

cosh 2x + cosh 2t

µ = π

2
+ π sinh 2t

cosh 2x + cosh 2t

which is a winding solution onR (with unit winding number). However, bearing in mind
that we need 0< µ < π , we see that it represents a smooth solution only for|t | < 1

2 log 3.

4. Positive-definite versions

In the systems discussed above, the metric on the target spaceM is indefinite:

ds2 = ηab dψa dψb

= −dθ2+ cosh2 θ dφ2.

One can replace this by an analogous positive-definite metric on the cylinder, namely

ds2 = dθ2+ cosh2 θ dφ2. (21)

The corresponding equations remain integrable, since they are obtained by simply making
the replacementφ 7→ iφ (and, for the Landau–Lifshitz case, alsot 7→ −it). We are still
thinking of φ as being a periodic coordinate (and looking for solutions which wind inφ);
as a consequence of this,M is no longer a symmetric space.

Let us briefly look at the corresponding ‘sigma model’. From the Lagrangian density

L = 1
2η

µν [(cosh2 θ)φµφν + θµθν ]
one obtains the equations of motion

θtt − θxx = coshθ sinhθ(φ2
t − φ2

x)

(φt cosh2 θ)t = (φx cosh2 θ)x.

The most general static winding solution is nowθ ≡ 0, φ = Nx. This is what one would
expect: in the positive-definite case, the string will try to minimize its length, andθ = 0
is where the cylinder is narrowest (with respect to the metric (21)). If we look for more
general solutions havingφ = Nx, thenθ has to be a function oft only, with

tanhθ = √m sn(ρt |m)
whereρ andm are constants withρ > |N | andm = 1−N2/ρ2. In other words, the string
oscillates between the valuesθ± = ± tanh−1√m.

5. Concluding remarks

There are several examples of integrable elliptic systems of partial differential equations
admitting topological soliton solutions: for example, instantons in sigma models onR2 and
gauge theory onR4, and BPS monopoles onR3. In these cases, there is no time dependence.

Analogous time-dependent examples (in other words, hyperbolic or parabolic systems,
rather than elliptic) are not as prevelant: in fact, sine-Gordon is the only well known
example. But many such integrable systems exist, and in this note we have briefly examined
a few of them. It might be of interest to study further the inverse scattering transforms for
these cases, and to try to attempt a general classification of systems of this type.
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