Integrable systems admitting topological solitons

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1998 J. Phys. A: Math. Gen. 31 L261
(http://iopscience.iop.org/0305-4470/31/13/003)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.121
The article was downloaded on 02/06/2010 at 06:30

Please note that terms and conditions apply.

LETTER TO THE EDITOR

Integrable systems admitting topological solitons

R S Ward and A E Winn
Department of Mathematical Sciences, University of Durham, Durham DH1 3LE, UK

Received 27 October 1997, in final form 15 January 1998

Abstract

We discuss $(1+1)$-dimensional sigma models and Heisenberg models in which the target space has the topology of a cylinder. In these integrable systems, the solutions are classified by a winding number.

1. Introduction

This letter deals with integrable $(1+1)$-dimensional systems, in which the configuration space or phase space has disconnected sectors classified topologically by an integer (a winding number). The general set-up involves a field $\Phi(x, t)$ taking values in some manifold M. Here $t \in \mathbb{R}$ denotes time, and $x \in X$ is the space variable; either $X=\mathbb{R}$ and we impose a boundary condition $\Phi(-\infty, t)=\Phi(\infty, t)$, or $X=S^{1}$ (i.e. Φ is periodic in x). Furthermore, M is chosen so that its fundamental group equals the group of integers \mathbb{Z}. So for each fixed $t, \Phi(\cdot, t)$ is in effect a continuous mapping from a circle into M, and it therefore has a winding number $N \in \mathbb{Z}$. As t changes, this integer remains constant. One could also view a solution Φ as wrapping the spacetime $X \times \mathbb{R}$ around the image manifold M, with this mapping having winding number N (in an appropriate sense).

The prototype in the $X=\mathbb{R}$ case is the sine-Gordon equation, where $M=S^{1}$. If we think of Φ as a two-dimensional unit vector ($\Phi \cdot \Phi=1$), then the sine-Gordon system corresponds to the Lagrangian density

$$
\begin{equation*}
\mathcal{L}=\frac{1}{2} \eta^{\mu \nu} \Phi_{\mu} \cdot \Phi_{v}-(1-K \cdot \Phi) \tag{1}
\end{equation*}
$$

where K is a constant unit vector. Hereafter $x^{\mu}=\left(x^{0}, x^{1}\right)=(t, x)$ are the spacetime coordinates; a subscript denotes partial differentiation; and $\eta^{\mu \nu}=\operatorname{diag}(1,-1)$ is the (inverse) spacetime metric. An N-kink solution of the sine-Gordon equation has winding number N.

In our examples M will be the cylinder $S^{1} \times \mathbb{R}$, which (at least to begin with) we think of as the hyperboloid of one sheet in \mathbb{R}^{3}. One can visualize the field as a closed string which is wound around this cylinder, and evolves in time. Instead of Φ, let us use the symbol ψ^{a}, denoting a three-dimensional vector satisfying

$$
\begin{equation*}
\eta_{a b} \psi^{a} \psi^{b}=1 \tag{2}
\end{equation*}
$$

where $\eta_{a b}=\operatorname{diag}(1,1,-1)$. The metric on the hyperboloid (2) is taken to be the one induced by the metric $\eta_{a b} ; M$ is then a symmetric space $S O(2,1) / S O(1,1)$. Two naturally defined systems taking values on M are the nonlinear sigma model, and the Heisenberg model (Landau-Lifshitz equation). The σ-model is defined by the Lagrangian density

$$
\begin{equation*}
\mathcal{L}=\frac{1}{2} \eta^{\mu \nu} \psi_{\mu}^{a} \psi_{\nu}^{b} \eta_{a b} \tag{3}
\end{equation*}
$$

while the Landau-Lifshitz equations arise from the Hamiltonian density

$$
\begin{equation*}
\mathcal{H}=\frac{1}{2} \psi_{x}^{a} \psi_{x}^{b} \eta_{a b} \tag{4}
\end{equation*}
$$

with Poisson brackets

$$
\begin{equation*}
\left\{\psi^{a}(x), \psi^{b}(y)\right\}=-\delta(x-y) \varepsilon^{a b c} \psi^{d}(x) \eta_{c d} . \tag{5}
\end{equation*}
$$

The analogous S^{2} systems, in which $\eta_{a b}$ is replaced by the Euclidean metric $\delta_{a b}$, are of course well known integrable systems; and their hyperbolic versions are therefore integrable too, simply by analytic continuation. (By integrability we mean the existence of a suitable Lax pair.) In fact, these hyperbolic versions have been widely studied in their own right: cf [1-6]. The aim in what follows is to examine the simplest 'winding' solutions of the systems (3) and (4), (5).

2. The hyperbolic Heisenberg model

The Landau-Lifshitz equation obtained from (4) and (5) is

$$
\begin{equation*}
\psi_{t}^{a}=\eta^{a b} \varepsilon_{b c d} \psi^{c} \psi_{x x}^{d} \tag{6}
\end{equation*}
$$

If we parametrize the hyperboloid in terms of 'polar angles' as

$$
\psi^{a}=(\cosh \theta \cos \phi, \cosh \theta \sin \phi, \sinh \theta)
$$

then (6) is equivalent to

$$
\begin{align*}
& \theta_{t}=2(\sinh \theta) \theta_{x} \phi_{x}+(\cosh \theta) \phi_{x x} \tag{7}\\
& \phi_{t}=(\operatorname{sech} \theta) \theta_{x x}+(\sinh \theta)\left(\phi_{x}\right)^{2} \tag{8}
\end{align*}
$$

while if we parametrize in terms of a stereographic projection as

$$
\psi^{a}=\frac{1}{1+u^{2}-v^{2}}\left(1-u^{2}+v^{2}, 2 u, 2 v\right)
$$

then (6) becomes

$$
\begin{align*}
& u_{t}=-v_{x x}-2 \alpha v\left(u_{x}^{2}+v_{x}^{2}\right)+4 \alpha u u_{x} v_{x} \tag{9}\\
& v_{t}=-u_{x x}+2 \alpha u\left(u_{x}^{2}+v_{x}^{2}\right)-4 \alpha v u_{x} v_{x} \tag{10}
\end{align*}
$$

where $\alpha=\left(1+u^{2}-v^{2}\right)^{-1}$.
Let us first look for static winding solutions, by solving (7), (8) with θ and ϕ being functions of x only. From (7) we obtain

$$
\begin{equation*}
\phi_{x}=B \operatorname{sech}^{2} \theta \tag{11}
\end{equation*}
$$

where B is a constant; and then (8) integrates to

$$
\begin{equation*}
\theta_{x}=\sqrt{A+B^{2} \operatorname{sech}^{2} \theta} \tag{12}
\end{equation*}
$$

with A constant. For a winding solution, we want $\theta(x)$ to be non-monotonic, which requires $-B^{2} \leqslant A<0$. Write $A=-N^{2}$, where $0<N \leqslant B$. Then the solution of (12) is

$$
\begin{equation*}
\theta(x)=\sinh ^{-1}\left(\sqrt{B^{2} / N^{2}-1} \sin (N x)\right) \tag{13}
\end{equation*}
$$

and this is periodic, with period 2π, provided N is an integer. Finally, $\phi(x)$ is obtained by integrating the smooth function (11). To check that we have a winding solution, it is sufficient to compute

$$
\begin{equation*}
\Delta \phi=\int_{0}^{2 \pi} B \operatorname{sech}^{2} \theta \mathrm{~d} x \tag{14}
\end{equation*}
$$

we find that $\Delta \phi=2 \pi N$, and so we have a space-periodic static solution, with winding number N.

Note that if $B=N$ in (13), then $\theta=0$ and $\phi=N x$: a solution which winds N times around the 'waist' of the hyperboloid. The simplest time-dependent solution is a generalization of this, namely $\theta \equiv$ constant, $\phi=N x+N^{2}(\sinh \theta) t$.

For these solutions, the space X is the circle; in fact, there are no travelling-wave winding solutions for $X=\mathbb{R}$. One can find a simple time-dependent solution on \mathbb{R} by using the stereographic form (9), (10) of the equations. Let us look for solutions in which α is a function of x only, i.e. take $u^{2}-v^{2}=f(x)^{2}$. It follows from (9) and (10) that the function $g=v u_{x}-u v_{x}$ satisfies

$$
\frac{\partial g}{\partial x}=2 g \frac{\partial}{\partial x} \log \left(1+f^{2}\right)
$$

If we take the simplest solution of this, namely $g \equiv 0$, then u and v must have the form

$$
\begin{aligned}
u(x, t) & =f(x) \cosh h(t) \\
v(x, t) & =f(x) \sinh h(t)
\end{aligned}
$$

Substituting these into (9), (10) gives $\mathrm{d} h / \mathrm{d} t=-m$ constant, and

$$
\begin{equation*}
\frac{\mathrm{d}^{2} f}{\mathrm{~d} x^{2}}=\frac{2 f}{\left(1+f^{2}\right)}\left(\frac{\mathrm{d} f}{\mathrm{~d} x}\right)^{2}+m f \tag{15}
\end{equation*}
$$

This has the first integral

$$
\left(\frac{\mathrm{d} f}{\mathrm{~d} x}\right)^{2}=c\left(1+f^{2}\right)^{2}-m\left(1+f^{2}\right)
$$

where c is an arbitrary constant. For winding solutions one needs $c \geqslant 0$. If $c=0$, one obtains a solution which is equivalent to (18) below; so take $c>0$, and scale x so that $c=1$. Now the requirement of winding imposes a restriction on m, namely $m \leqslant 1$. For $m<0$ one obtains solutions which are similar to those for $m \geqslant 0$, so let us take $0 \leqslant m \leqslant 1$. Then the solution of (15) is

$$
\begin{equation*}
f(x)=\sqrt{1-m} \operatorname{sc}(x \mid m) \tag{16}
\end{equation*}
$$

in the elliptic-function notation of [7]. The two limits of (16) are

$$
\begin{equation*}
f(x)=\tan x \quad \text { for } m=0 \tag{17}
\end{equation*}
$$

and (after a shift in x)

$$
\begin{equation*}
f(x)=\operatorname{cosech} x \quad \text { for } m=1 \tag{18}
\end{equation*}
$$

Therefore, we have a family of winding solutions parametrized by $m \in[0,1]$, with $h(t)=-m t$ and where $f(x)$ is specified in (16), (17) or (18). For (16) and (17), the solution is periodic (i.e. $X=S^{1}$); while for (18) it lives on $X=\mathbb{R}$.

A Lax pair corresponding to the equation (6) is as follows. Define a 2×2 matrix $S \in S L(2, \mathbb{R})$ by

$$
S=\left[\begin{array}{cc}
\psi^{1} & \psi^{2}+\psi^{3} \\
\psi^{2}-\psi^{3} & -\psi^{1}
\end{array}\right]
$$

Then the consistency condition for the linear system

$$
\begin{aligned}
& \Psi_{x}=\lambda S \Psi \\
& \Psi_{t}=-\lambda\left(2 \lambda S+S_{x} S\right) \Psi
\end{aligned}
$$

is exactly (6). Implementation of the inverse scattering transform (on $X=\mathbb{R}$) produces N soliton solutions, and these turn out to have winding number N. The solution corresponding to (18), which in terms of ψ^{a} is

$$
\psi^{a}=\left(1-2 \operatorname{sech}^{2} x, 2 \operatorname{sech}^{2} x \sinh x \cosh t,-2 \operatorname{sech}^{2} x \sinh x \sinh t\right)
$$

is the simplest example: a stationary 1 -soliton with winding number $N=1$. These solitons are closely related to those of the 'standard' Heisenberg model [8].

3. The hyperbolic sigma model

In terms of the (θ, ϕ) parametrization, the σ-model equations are

$$
\begin{align*}
& \theta_{t t}-\theta_{x x}=-\cosh \theta \sinh \theta\left(\phi_{t}^{2}-\phi_{x}^{2}\right) \tag{19}\\
& \left(\phi_{t} \cosh ^{2} \theta\right)_{t}=\left(\phi_{x} \cosh ^{2} \theta\right)_{x} \tag{20}
\end{align*}
$$

For the static problem, the equations (and hence their solutions) are the same as for the static Heisenberg case of the previous section. What follows are some examples of time-dependent winding solutions.

First, let us look for solutions on $X=S^{1}$ for which $\phi=x$. (To go to winding number $N>1$ is an easy generalization.) It follows from (19), (20) that θ is a function of t only, satisfying

$$
\theta_{t}^{2}=c+\sinh ^{2} \theta
$$

where c is an arbitrary constant. This is easily integrated in terms of elliptic functions. Apart from the case $c=0$, the solutions have the property that $\theta(t)$ reaches infinity in finite time. An example is $c=1$, where the solution

$$
\theta(t)=\sinh ^{-1} \tan t
$$

goes from $\theta=-\infty$ to $+\infty$ as t goes from $-\pi / 2$ to $+\pi / 2$. For $c>0$ the solutions all have this behaviour, whereas for $c<0, \theta$ comes in from infinity, turns round, and goes out again. In the limiting case $c=0$, the solution

$$
\theta(t)=2 \tanh ^{-1}\left(k \mathrm{e}^{t}\right)
$$

includes the static case $\theta \equiv 0$, and tends asymptotically to $\theta=0$ as $t \longrightarrow-\infty$.
Our second family of solutions arises from the 'self-duality' equations

$$
\begin{aligned}
& \phi_{x}=(\operatorname{sech} \theta) \theta_{t} \\
& \phi_{t}=(\operatorname{sech} \theta) \theta_{x}
\end{aligned}
$$

which imply (19), (20). So ϕ and $\mu=2 \tan ^{-1} \exp \theta$ satisfy $\phi_{x}=\mu_{t}, \phi_{t}=\mu_{x}$, and are therefore 'conjugate' solutions of the $(1+1)$-dimensional wave equation. The general solution is

$$
\begin{aligned}
& \phi=f(x+t)+g(x-t) \\
& \mu=f(x+t)-g(x-t)
\end{aligned}
$$

where f and g are arbitrary functions. All winding solutions are defined only on a finite time interval. For example, the choice

$$
f(\xi)-\frac{\pi}{4}=g(\xi)+\frac{\pi}{4}=\frac{1}{2} \pi \tanh \xi
$$

leads to

$$
\begin{aligned}
\phi & =\frac{\pi \sinh 2 x}{\cosh 2 x+\cosh 2 t} \\
\mu & =\frac{\pi}{2}+\frac{\pi \sinh 2 t}{\cosh 2 x+\cosh 2 t}
\end{aligned}
$$

which is a winding solution on \mathbb{R} (with unit winding number). However, bearing in mind that we need $0<\mu<\pi$, we see that it represents a smooth solution only for $|t|<\frac{1}{2} \log 3$.

4. Positive-definite versions

In the systems discussed above, the metric on the target space M is indefinite:

$$
\begin{aligned}
\mathrm{d} s^{2} & =\eta_{a b} \mathrm{~d} \psi^{a} \mathrm{~d} \psi^{b} \\
& =-\mathrm{d} \theta^{2}+\cosh ^{2} \theta \mathrm{~d} \phi^{2}
\end{aligned}
$$

One can replace this by an analogous positive-definite metric on the cylinder, namely

$$
\begin{equation*}
\mathrm{d} s^{2}=\mathrm{d} \theta^{2}+\cosh ^{2} \theta \mathrm{~d} \phi^{2} \tag{21}
\end{equation*}
$$

The corresponding equations remain integrable, since they are obtained by simply making the replacement $\phi \mapsto \mathrm{i} \phi$ (and, for the Landau-Lifshitz case, also $t \mapsto-\mathrm{i} t$). We are still thinking of ϕ as being a periodic coordinate (and looking for solutions which wind in ϕ); as a consequence of this, M is no longer a symmetric space.

Let us briefly look at the corresponding 'sigma model'. From the Lagrangian density

$$
\mathcal{L}=\frac{1}{2} \eta^{\mu \nu}\left[\left(\cosh ^{2} \theta\right) \phi_{\mu} \phi_{\nu}+\theta_{\mu} \theta_{\nu}\right]
$$

one obtains the equations of motion

$$
\begin{aligned}
& \theta_{t t}-\theta_{x x}=\cosh \theta \sinh \theta\left(\phi_{t}^{2}-\phi_{x}^{2}\right) \\
& \left(\phi_{t} \cosh ^{2} \theta\right)_{t}=\left(\phi_{x} \cosh ^{2} \theta\right)_{x} .
\end{aligned}
$$

The most general static winding solution is now $\theta \equiv 0, \phi=N x$. This is what one would expect: in the positive-definite case, the string will try to minimize its length, and $\theta=0$ is where the cylinder is narrowest (with respect to the metric (21)). If we look for more general solutions having $\phi=N x$, then θ has to be a function of t only, with

$$
\tanh \theta=\sqrt{m} \operatorname{sn}(\rho t \mid m)
$$

where ρ and m are constants with $\rho>|N|$ and $m=1-N^{2} / \rho^{2}$. In other words, the string oscillates between the values $\theta_{ \pm}= \pm \tanh ^{-1} \sqrt{m}$.

5. Concluding remarks

There are several examples of integrable elliptic systems of partial differential equations admitting topological soliton solutions: for example, instantons in sigma models on \mathbb{R}^{2} and gauge theory on \mathbb{R}^{4}, and BPS monopoles on \mathbb{R}^{3}. In these cases, there is no time dependence.

Analogous time-dependent examples (in other words, hyperbolic or parabolic systems, rather than elliptic) are not as prevelant: in fact, sine-Gordon is the only well known example. But many such integrable systems exist, and in this note we have briefly examined a few of them. It might be of interest to study further the inverse scattering transforms for these cases, and to try to attempt a general classification of systems of this type.

Acknowledgments

This work was supported by an EPSRC Research Studentship. AEW acknowledges helpful conversations with A Kundu and O K Pashaev.

References

[1] Kundu A 1982 Lett. Math. Phys. 6479
[2] Kundu A 1986 J. Phys. A: Math. Gen. 191303
[3] Lambert D and Piette B 1988 Class. Quantum Grav. 5307
[4] Martina L, Pashaev O K and Soliani G 1997 Class. Quantum Grav. 143179
[5] Lee J H and Pashaev O K 1997 Abelian gauge theory and integrable σ-models Preprint MIAS 97-3
[6] de Vega H J and Sanchez N 1993 Phys. Rev. D 473394
[7] Abramowitz M and Stegun I A 1964 Handbook of Mathematical Functions (Washington, DC: National Bureau of Standards)
[8] Faddeev L D and Takhtajan L A 1987 Hamiltonian Methods in the Theory of Solitons (Berlin: Springer)

